Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1179131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565139

RESUMO

Background: SGLT2i directly inhibit the cardiac sodium-hydrogen exchanger-1 (NHE1) in isolated ventricular cardiomyocytes (CMs). However, other studies with SGLT2i have yielded conflicting results. This may be explained by methodological factors including cell isolation techniques, cell types and ambient pH. In this study, we tested whether the use of protease XIV (PXIV) may abrogate inhibition of SGLT2i on cardiac NHE1 activity in isolated rabbit CMs or rat cardiomyoblast cells (H9c2), in a pH dependent manner. Methods: Rabbit ventricular CMs were enzymatically isolated from Langendorff-perfused hearts during a 30-min perfusion period followed by a 25-min after-dissociation period, using a collagenase mixture without or with a low dose PXIV (0.009 mg/mL) present for different periods. Empagliflozin (EMPA) inhibition on NHE activity was then assessed at pH of 7.0, 7.2 and 7.4. In addition, effects of 10 min PXIV treatment were also evaluated in H9c2 cells for EMPA and cariporide NHE inhibition. Results: EMPA reduced NHE activity in rabbit CMs that were not exposed to PXIV treatment or undergoing a 35-min PXIV treatment, independent of pH levels. However, when exposure time to PXIV was extended to 55 min, NHE inhibition by Empa was completely abolished at all three pH levels. In H9c2 cells, NHE inhibition by EMPA was evident in non-treated cells but lost after 10-min incubation with PXIV. NHE inhibition by cariporide was unaffected by PXIV. Conclusion: The use of protease XIV in cardiac cell isolation procedures obliterates the inhibitory effects of SGLT2i on NHE1 activity in isolated cardiac cells, independent of pH.

2.
Biomed Pharmacother ; 146: 112515, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34896968

RESUMO

Inflammation causing oxidative stress in endothelial cells contributes to heart failure development. Sodium/glucose cotransporter 2 inhibitors (SGLT2i's) were shown to reduce heart failure hospitalization and oxidative stress. However, how inflammation causes oxidative stress in endothelial cells, and how SGLT2i's can reduce this is unknown. Here we hypothesized that 1) TNF-α activates the Na+/H+ exchanger (NHE) and raises cytoplasmatic Na+ ([Na+]c), 2) increased [Na+]c causes reactive oxygen species (ROS) production, and 3) empagliflozin (EMPA) reduces inflammation-induced ROS through NHE inhibition and lowering of [Na+]c in human endothelial cells. Human umbilical vein endothelial cells (HUVECs) and human coronary artery endothelial cells (HCAECs) were incubated with vehicle (V), 10 ng/ml TNF-α, 1 µM EMPA or the NHE inhibitor Cariporide (CARI, 10 µM) and NHE activity, intracellular [Na+]c and ROS were analyzed. TNF-α enhanced NHE activity in HCAECs and HUVECs by 92% (p < 0.01) and 51% (p < 0.05), respectively, and increased [Na+]c from 8.2 ± 1.6 to 11.2 ± 0.1 mM (p < 0.05) in HCAECs. Increasing [Na+]c by ouabain elevated ROS generation in both HCAECs and HUVECs. EMPA inhibited NHE activity in HCAECs and in HUVECs. EMPA concomitantly lowered [Na+]c in both cell types. In both cell types, TNF α-induced ROS was lowered by EMPA or CARI, with no further ROS lowering by EMPA in the presence of CARI, indicating EMPA attenuated ROS through NHE inhibition. In conclusion, inflammation induces oxidative stress in human endothelial cells through NHE activation causing elevations in [Na+]c, a process that is inhibited by EMPA through NHE inhibition.


Assuntos
Compostos Benzidrílicos/farmacologia , Células Endoteliais/efeitos dos fármacos , Glucosídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Trocadores de Sódio-Hidrogênio/efeitos dos fármacos , Sódio/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Ouabaína/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Front Physiol ; 9: 1575, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519189

RESUMO

Sodium glucose cotransporter 2 inhibitors (SGLT2i) are the first antidiabetic compounds that effectively reduce heart failure hospitalization and cardiovascular death in type 2 diabetics. Being explicitly designed to inhibit SGLT2 in the kidney, SGLT2i have lately been investigated for their off-target cardiac actions. Here, we review the direct effects of SGLT2i Empagliflozin (Empa), Dapagliflozin (Dapa), and Canagliflozin (Cana) on various cardiac cell types and cardiac function, and how these may contribute to the cardiovascular benefits observed in large clinical trials. SGLT2i impaired the Na+/H+ exchanger 1 (NHE-1), reduced cytosolic [Ca2+] and [Na+] and increased mitochondrial [Ca2+] in healthy cardiomyocytes. Empa, one of the best studied SGLT2i, maintained cell viability and ATP content following hypoxia/reoxygenation in cardiomyocytes and endothelial cells. SGLT2i recovered vasoreactivity of hyperglycemic and TNF-α-stimulated aortic rings and of hyperglycemic endothelial cells. Anti-inflammatory actions of Cana in IL-1ß-treated HUVEC and of Dapa in LPS-treated cardiofibroblast were mediated by AMPK activation. In isolated mouse hearts, Empa and Cana, but not Dapa, induced vasodilation. In ischemia-reperfusion studies of the isolated heart, Empa delayed contracture development during ischemia and increased mitochondrial respiration post-ischemia. Direct cardiac effects of SGLT2i target well-known drivers of diabetes and heart failure (elevated cardiac cytosolic [Ca2+] and [Na+], activated NHE-1, elevated inflammation, impaired vasorelaxation, and reduced AMPK activity). These cardiac effects may contribute to the large beneficial clinical effects of these antidiabetic drugs.

5.
Nat Commun ; 9(1): 4357, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341287

RESUMO

The cardiac autonomic nervous system (ANS) controls normal atrial electrical function. The cardiac ANS produces various neuropeptides, among which the neurokinins, whose actions on atrial electrophysiology are largely unknown. We here demonstrate that the neurokinin substance-P (Sub-P) activates a neurokinin-3 receptor (NK-3R) in rabbit, prolonging action potential (AP) duration through inhibition of a background potassium current. In contrast, ventricular AP duration was unaffected by NK-3R activation. NK-3R stimulation lengthened atrial repolarization in intact rabbit hearts and consequently suppressed arrhythmia duration and occurrence in a rabbit isolated heart model of atrial fibrillation (AF). In human atrial appendages, the phenomenon of NK-3R mediated lengthening of atrial repolarization was also observed. Our findings thus uncover a pathway to selectively modulate atrial AP duration by activation of a hitherto unidentified neurokinin-3 receptor in the membrane of atrial myocytes. NK-3R stimulation may therefore represent an anti-arrhythmic concept to suppress re-entry-based atrial tachyarrhythmias, including AF.


Assuntos
Átrios do Coração/metabolismo , Canais de Potássio/metabolismo , Receptores da Neurocinina-3/fisiologia , Potenciais de Ação , Animais , Arritmias Cardíacas , Fibrilação Atrial , Função Atrial , Humanos , Bloqueadores dos Canais de Potássio , Coelhos , Receptores da Neurocinina-3/metabolismo
6.
Circulation ; 138(13): 1330-1342, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29650543

RESUMO

BACKGROUND: Mutations in RBM20 (RNA-binding motif protein 20) cause a clinically aggressive form of dilated cardiomyopathy, with an increased risk of malignant ventricular arrhythmias. RBM20 is a splicing factor that targets multiple pivotal cardiac genes, such as Titin (TTN) and CAMK2D (calcium/calmodulin-dependent kinase II delta). Aberrant TTN splicing is thought to be the main determinant of RBM20-induced dilated cardiomyopathy, but is not likely to explain the increased risk of arrhythmias. Here, we investigated the extent to which RBM20 mutation carriers have an increased risk of arrhythmias and explore the underlying molecular mechanism. METHODS: We compared clinical characteristics of RBM20 and TTN mutation carriers and used our previously generated Rbm20 knockout (KO) mice to investigate downstream effects of Rbm20-dependent splicing. Cellular electrophysiology and Ca2+ measurements were performed on isolated cardiomyocytes from Rbm20 KO mice to determine the intracellular consequences of reduced Rbm20 levels. RESULTS: Sustained ventricular arrhythmias were more frequent in human RBM20 mutation carriers than in TTN mutation carriers (44% versus 5%, respectively, P=0.006). Splicing events that affected Ca2+- and ion-handling genes were enriched in Rbm20 KO mice, most notably in the genes CamkIIδ and RyR2. Aberrant splicing of CamkIIδ in Rbm20 KO mice resulted in a remarkable shift of CamkIIδ toward the δ-A isoform that is known to activate the L-type Ca2+ current ( ICa,L). In line with this, we found an increased ICa,L, intracellular Ca2+ overload and increased sarcoplasmic reticulum Ca2+ content in Rbm20 KO myocytes. In addition, not only complete loss of Rbm20, but also heterozygous loss of Rbm20 increased spontaneous sarcoplasmic reticulum Ca2+ releases, which could be attenuated by treatment with the ICa,L antagonist verapamil. CONCLUSIONS: We show that loss of Rbm20 disturbs Ca2+ handling and leads to more proarrhythmic Ca2+ releases from the sarcoplasmic reticulum. Patients that carry a pathogenic RBM20 mutation have more ventricular arrhythmias despite a similar left ventricular function, in comparison with patients with a TTN mutation. Our experimental data suggest that RBM20 mutation carriers may benefit from treatment with an ICa,L blocker to reduce their arrhythmia burden.


Assuntos
Sinalização do Cálcio/genética , Cardiomiopatia Dilatada/genética , Frequência Cardíaca/genética , Mutação , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/genética , Taquicardia Ventricular/genética , Fibrilação Ventricular/genética , Potenciais de Ação/genética , Adulto , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Células Cultivadas , Conectina/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo , Proteínas de Ligação a RNA/metabolismo , Ratos , Estudos Retrospectivos , Fatores de Risco , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia
7.
Diabetologia ; 61(3): 722-726, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29197997

RESUMO

AIMS/HYPOTHESIS: Sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i) constitute a novel class of glucose-lowering (type 2) kidney-targeted agents. We recently reported that the SGLT2i empagliflozin (EMPA) reduced cardiac cytosolic Na+ ([Na+]c) and cytosolic Ca2+ ([Ca2+]c) concentrations through inhibition of Na+/H+ exchanger (NHE). Here, we examine (1) whether the SGLT2i dapagliflozin (DAPA) and canagliflozin (CANA) also inhibit NHE and reduce [Na+]c; (2) a structural model for the interaction of SGLT2i to NHE; (3) to what extent SGLT2i affect the haemodynamic and metabolic performance of isolated hearts of healthy mice. METHODS: Cardiac NHE activity and [Na+]c in mouse cardiomyocytes were measured in the presence of clinically relevant concentrations of EMPA (1 µmol/l), DAPA (1 µmol/l), CANA (3 µmol/l) or vehicle. NHE docking simulation studies were applied to explore potential binding sites for SGTL2i. Constant-flow Langendorff-perfused mouse hearts were subjected to SGLT2i for 30 min, and cardiovascular function, O2 consumption and energetics (phosphocreatine (PCr)/ATP) were determined. RESULTS: EMPA, DAPA and CANA inhibited NHE activity (measured through low pH recovery after NH4+ pulse: EMPA 6.69 ± 0.09, DAPA 6.77 ± 0.12 and CANA 6.80 ± 0.18 vs vehicle 7.09 ± 0.09; p < 0.001 for all three comparisons) and reduced [Na+]c (in mmol/l: EMPA 10.0 ± 0.5, DAPA 10.7 ± 0.7 and CANA 11.0 ± 0.9 vs vehicle 12.7 ± 0.7; p < 0.001). Docking studies provided high binding affinity of all three SGLT2i with the extracellular Na+-binding site of NHE. EMPA and CANA, but not DAPA, induced coronary vasodilation of the intact heart. PCr/ATP remained unaffected. CONCLUSIONS/INTERPRETATION: EMPA, DAPA and CANA directly inhibit cardiac NHE flux and reduce [Na+]c, possibly by binding with the Na+-binding site of NHE-1. Furthermore, EMPA and CANA affect the healthy heart by inducing vasodilation. The [Na+]c-lowering class effect of SGLT2i is a potential approach to combat elevated [Na+]c that is known to occur in heart failure and diabetes.


Assuntos
Citosol/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose , Transportador 2 de Glucose-Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Aminopiridinas/farmacologia , Animais , Compostos Benzidrílicos/farmacologia , Canagliflozina/farmacologia , Glucosídeos/farmacologia , Masculino , Camundongos , Sulfonamidas/farmacologia
8.
Diabetologia ; 60(3): 568-573, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27752710

RESUMO

AIMS/HYPOTHESIS: Empagliflozin (EMPA), an inhibitor of the renal sodium-glucose cotransporter (SGLT) 2, reduces the risk of cardiovascular death in patients with type 2 diabetes. The underlying mechanism of this effect is unknown. Elevated cardiac cytoplasmic Na+ ([Na+]c) and Ca2+ ([Ca2+]c) concentrations and decreased mitochondrial Ca2+ concentration ([Ca2+]m) are drivers of heart failure and cardiac death. We therefore hypothesised that EMPA would directly modify [Na+]c, [Ca2+]c and [Ca2+]m in cardiomyocytes. METHODS: [Na+]c, [Ca2+]c, [Ca 2+]m and Na+/H+ exchanger (NHE) activity were measured fluorometrically in isolated ventricular myocytes from rabbits and rats. RESULTS: An increase in extracellular glucose, from 5.5 mmol/l to 11 mmol/l, resulted in increased [Na+]c and [Ca2+]c levels. EMPA treatment directly inhibited NHE flux, caused a reduction in [Na+]c and [Ca2+]c and increased [Ca2+]m. After pretreatment with the NHE inhibitor, Cariporide, these effects of EMPA were strongly reduced. EMPA also affected [Na+]c and NHE flux in the absence of extracellular glucose. CONCLUSIONS/INTERPRETATION: The glucose lowering kidney-targeted agent, EMPA, demonstrates direct cardiac effects by lowering myocardial [Na+]c and [Ca2+]c and enhancing [Ca2+]m, through impairment of myocardial NHE flux, independent of SGLT2 activity.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Glucosídeos/uso terapêutico , Hipoglicemiantes/uso terapêutico , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , Animais , Cálcio/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Coelhos , Ratos
9.
J Physiol Biochem ; 73(3): 323-333, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28258543

RESUMO

Ischemia/reperfusion (I/R) of the heart becomes injurious when duration of the ischemic insult exceeds a certain threshold (approximately ≥20 min). Mitochondrial bound hexokinase II (mtHKII) protects against I/R injury, with the amount of mtHKII correlating with injury. Here, we examine whether mtHKII can induce the transition from non-injurious to injurious I/R, by detaching HKII from mitochondria during a non-injurious I/R interval. Additionally, we examine possible underlying mechanisms (increased reactive oxygen species (ROS), increased oxygen consumption (MVO2) and decreased cardiac energetics) associated with this transition. Langendorff perfused rat hearts were treated for 20 min with saline, TAT-only or 200 nM TAT-HKII, a peptide that translocates HKII from mitochondria. Then, hearts were exposed to non-injurious 15-min ischemia, followed by 30-min reperfusion. I/R injury was determined by necrosis (LDH release) and cardiac mechanical recovery. ROS were measured by DHE fluorescence. Changes in cardiac respiratory activity (cardiac MVO2 and efficiency and mitochondrial oxygen tension (mitoPO2) using protoporphyrin IX) and cardiac energetics (ATP, PCr, ∆GATP) were determined following peptide treatment. When exposed to 15-min ischemia, control hearts had no necrosis and 85% recovery of function. Conversely, TAT-HKII treatment resulted in significant LDH release and reduced cardiac recovery (25%), indicating injurious I/R. This was associated with increased ROS during ischemia and reperfusion. TAT-HKII treatment reduced MVO2 and improved energetics (increased PCr) before ischemia, without affecting MVO2/RPP ratio or mitoPO2. In conclusion, a reduction in mtHKII turns non-injurious I/R into injurious I/R. Loss of mtHKII was associated with increased ROS during ischemia and reperfusion, but not with increased MVO2 or decreased cardiac energetics before damage occurs.


Assuntos
Hexoquinase/metabolismo , Mitocôndrias Cardíacas/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Metabolismo Energético , Masculino , Miocárdio/enzimologia , Oxirredução , Consumo de Oxigênio , Fosfocreatina/metabolismo , Ligação Proteica , Transporte Proteico , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
10.
Sci Rep ; 5: 15404, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26486271

RESUMO

Distinct stressors may induce heart failure. As compensation, ß-adrenergic stimulation enhances myocardial contractility by elevating cardiomyocyte intracellular Ca(2+) ([Ca(2+)]i). However, chronic ß-adrenergic stimulation promotes adverse cardiac remodelling. Cardiac expression of nuclear receptor Nur77 is enhanced by ß-adrenergic stimulation, but its role in cardiac remodelling is still unclear. We show high and rapid Nur77 upregulation in cardiomyocytes stimulated with ß-adrenergic agonist isoproterenol. Nur77 knockdown in culture resulted in hypertrophic cardiomyocytes. Ventricular cardiomyocytes from Nur77-deficient (Nur77-KO) mice exhibited elevated diastolic and systolic [Ca(2+)]i and prolonged action potentials compared to wild type (WT). In vivo, these differences resulted in larger cardiomyocytes, increased expression of hypertrophic genes, and more cardiac fibrosis in Nur77-KO mice upon chronic isoproterenol stimulation. In line with the observed elevated [Ca(2+)]i, Ca(2+)-activated phosphatase calcineurin was more active in Nur77-KO mice compared to WT. In contrast, after cardiac pressure overload by aortic constriction, Nur77-KO mice exhibited attenuated remodelling compared to WT. Concluding, Nur77-deficiency results in significantly altered cardiac Ca(2+) homeostasis and distinct remodelling outcome depending on the type of insult. Detailed knowledge on the role of Nur77 in maintaining cardiomyocyte Ca(2+) homeostasis and the dual role Nur77 plays in cardiac remodelling will aid in developing personalized therapies against heart failure.


Assuntos
Insuficiência Cardíaca/genética , Contração Miocárdica/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Remodelação Ventricular/genética , Agonistas Adrenérgicos beta/administração & dosagem , Animais , Cálcio/metabolismo , Insuficiência Cardíaca/fisiopatologia , Homeostase , Humanos , Isoproterenol/administração & dosagem , Camundongos , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Remodelação Ventricular/fisiologia
11.
Circ Arrhythm Electrophysiol ; 8(6): 1481-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26429563

RESUMO

BACKGROUND: Hypercholesterolemia protects against ventricular fibrillation in patients with myocardial infarction. We hypothesize that hypercholesterolemia protects against ischemia-induced reentrant arrhythmias because of altered ion channel function. METHODS AND RESULTS: ECGs were measured in low-density lipoprotein receptor knockout (LDLr(-/-)), apolipoprotein A1 knockout (ApoA1(-/-)), and wild-type (WT) mice. Action potentials, calcium handling, and ion currents were recorded in ventricular myocytes. Gene expression was determined by quantitative polymerase chain reaction and Western blot. In isolated perfused hearts, regional ischemia was induced and arrhythmia inducibility was tested. Serum low-density lipoprotein (LDL) cholesterol was higher in LDLr(-/-) mice than in WT mice (2.6 versus 0.4 mmol/L), and high-density lipoprotein cholesterol was significantly lower in ApoA1(-/-) mice than in WT mice (0.3 versus 1.8 mmol/L). LDLr(-/-) and ApoA1(-/-) myocytes contained more cholesterol than WT (34.4±2.8 and 36.5±2.4 versus 25.5±0.4 µmol/g protein). The major potassium currents were not different in LDLr(-/-) and ApoA1(-/-) compared with WT mice. The L-type calcium current (I(Ca)), however, was larger in LDLr(-/-) and ApoA1(-/-) than in WT (12.1±0.7 and 12.8±0.8 versus 9.4±1.1 pA/pF). Calcium transient amplitude and fractional sarcoplasmic reticulum calcium release were larger and action potential and QTc duration longer in LDLr(-/-) and ApoA1(-/-) than in WT mice (action potential duration at 90% of repolarization: 102±4 and 106±3 versus 84±3.1 ms; QTc: 50.9±1.3 and 52.8±0.8 versus 43.5±1.2 ms). During ischemia, ventricular tachycardia/ventricular fibrillation inducibility was larger in WT than in LDLr(-/-) and ApoA1(-/-) hearts. Expression of sodium channel and Ca-handling genes were not significantly different between groups. CONCLUSIONS: Dyscholesterolemia is associated with action potential prolongation because of increased I(Ca) and reduces occurrence of reentrant arrhythmias during ischemia.


Assuntos
Hipercolesterolemia/complicações , Isquemia Miocárdica/complicações , Miócitos Cardíacos/metabolismo , Taquicardia Ventricular/prevenção & controle , Fibrilação Ventricular/prevenção & controle , Potenciais de Ação , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Regulação da Expressão Gênica , Frequência Cardíaca , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/fisiopatologia , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Retículo Sarcoplasmático/metabolismo , Esfingolipídeos/sangue , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/genética , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia
12.
NMR Biomed ; 28(10): 1218-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26269430

RESUMO

(31)P MRS provides a unique non-invasive window into myocardial energy homeostasis. Mouse models of cardiac disease are widely used in preclinical studies, but the application of (31)P MRS in the in vivo mouse heart has been limited. The small-sized, fast-beating mouse heart imposes challenges regarding localized signal acquisition devoid of contamination with signal originating from surrounding tissues. Here, we report the implementation and validation of three-dimensional image-selected in vivo spectroscopy (3D ISIS) for localized (31)P MRS of the in vivo mouse heart at 9.4 T. Cardiac (31)P MR spectra were acquired in vivo in healthy mice (n = 9) and in transverse aortic constricted (TAC) mice (n = 8) using respiratory-gated, cardiac-triggered 3D ISIS. Localization and potential signal contamination were assessed with (31)P MRS experiments in the anterior myocardial wall, liver, skeletal muscle and blood. For healthy hearts, results were validated against ex vivo biochemical assays. Effects of isoflurane anesthesia were assessed by measuring in vivo hemodynamics and blood gases. The myocardial energy status, assessed via the phosphocreatine (PCr) to adenosine 5'-triphosphate (ATP) ratio, was approximately 25% lower in TAC mice compared with controls (0.76 ± 0.13 versus 1.00 ± 0.15; P < 0.01). Localization with one-dimensional (1D) ISIS resulted in two-fold higher PCr/ATP ratios than measured with 3D ISIS, because of the high PCr levels of chest skeletal muscle that contaminate the 1D ISIS measurements. Ex vivo determinations of the myocardial PCr/ATP ratio (0.94 ± 0.24; n = 8) confirmed the in vivo observations in control mice. Heart rate (497 ± 76 beats/min), mean arterial pressure (90 ± 3.3 mmHg) and blood oxygen saturation (96.2 ± 0.6%) during the experimental conditions of in vivo (31)P MRS were within the normal physiological range. Our results show that respiratory-gated, cardiac-triggered 3D ISIS allows for non-invasive assessments of in vivo mouse myocardial energy homeostasis with (31)P MRS under physiological conditions.


Assuntos
Trifosfato de Adenosina/análise , Imageamento Tridimensional/métodos , Espectroscopia de Ressonância Magnética/métodos , Miocárdio/química , Fosfocreatina/análise , Anestesia por Inalação , Anestésicos Inalatórios , Animais , Aorta , Metabolismo Energético , Hemodinâmica , Homeostase , Isoflurano , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Oxigênio/sangue , Isótopos de Fósforo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia
13.
Circ Res ; 111(3): 333-43, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22723301

RESUMO

RATIONALE: The SCN10A gene encodes the neuronal sodium channel isoform Na(V)1.8. Several recent genome-wide association studies have linked SCN10A to PR interval and QRS duration, strongly suggesting an as-yet unknown role for Na(V)1.8 in cardiac electrophysiology. OBJECTIVE: To demonstrate the functional presence of SCN10A/Nav1.8 in intracardiac neurons of the mouse heart. METHODS AND RESULTS: Immunohistochemistry on mouse tissue sections showed intense Na(V)1.8 labeling in dorsal root ganglia and intracardiac ganglia and only modest Na(V)1.8 expression within the myocardium. Immunocytochemistry further revealed substantial Na(V)1.8 staining in isolated neurons from murine intracardiac ganglia but no Na(V)1.8 expression in isolated ventricular myocytes. Patch-clamp studies demonstrated that the Na(V)1.8 blocker A-803467 (0.5-2 µmol/L) had no effect on either mean sodium current (I(Na)) density or I(Na) gating kinetics in isolated myocytes but significantly reduced I(Na) density in intracardiac neurons. Furthermore, A-803467 accelerated the slow component of current decay and shifted voltage dependence of inactivation toward more negative voltages, as expected for blockade of Na(V)1.8-based I(Na). In line with these findings, A-803467 did not affect cardiomyocyte action potential upstroke velocity but markedly reduced action potential firing frequency in intracardiac neurons, confirming a functional role for Na(V)1.8 in cardiac neural activity. CONCLUSIONS: Our findings demonstrate the functional presence of SCN10A/Na(V)1.8 in intracardiac neurons, indicating a novel role for this neuronal sodium channel in regulation of cardiac electric activity.


Assuntos
Eletrofisiologia/métodos , Miócitos Cardíacos/fisiologia , Neurônios Aferentes/fisiologia , Canais de Sódio/fisiologia , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.8 , Neurônios Aferentes/metabolismo
14.
Europace ; 14(10): 1518-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22490373

RESUMO

AIMS: Recurrences of ventricular fibrillation (VF) during cardiopulmonary resuscitation (CPR) are associated with a reduced chance of survival. The effect of VF during CPR on the myocardium is unknown. We tested the hypothesis that VF during simulated CPR reduces the restoration of the myocardial energy state and contractile function. METHODS AND RESULTS: Twelve porcine hearts were isolated and perfused with the pig's own blood. First, cardiac oxygen consumption was measured by blood gas analysis. Secondly, we simulated sudden cardiac arrest by VF (7 min VF, zero flow) followed by simulated CPR (7 min, 0.3 mL/g/min perfusion rate) in the absence and presence of VF [six hearts were maintained in VF (VF-group), six were defibrillated (defib-group)]. The VF increased the cardiac oxygen consumption by 71% (0.87 ± 0.12 vs. 1.49 ± 0.14 µmol O2/g/min; mean ± SEM, P< 0.001) compared with a ventricular rhythm of 62 beats/min. The presence of VF during simulated CPR after 7 min of cardiac arrest hampered restoration of myocardial creatine-phosphate levels compared with defibrillated hearts (61 ± 9 vs. 87 ± 7% of baseline values, respectively; P< 0.05). The cardiac contractile function was significantly higher in the defib- than in the VF-group (area under the pressure curve 2.29 ± 0.22 vs. 1.72 ± 0.14 s×mm Hg respectively; P< 0.05). CONCLUSIONS: These data demonstrate that the cardiac oxygen consumption is increased by VF and that the presence of VF during CPR hampers the restoration of the myocardial energy state and contractility. Strategies that reduce VF duration without disrupting chest compressions will benefit the restoration of the cardiac energy state during resuscitations.


Assuntos
Reanimação Cardiopulmonar , Fosfocreatina/metabolismo , Fibrilação Ventricular/fisiopatologia , Animais , Gasometria , Morte Súbita Cardíaca/etiologia , Cardioversão Elétrica , Frequência Cardíaca/fisiologia , Técnicas In Vitro , Masculino , Contração Miocárdica/fisiologia , Consumo de Oxigênio/fisiologia , Fosfocreatina/análise , Suínos , Fibrilação Ventricular/complicações
15.
Circ Heart Fail ; 5(3): 376-84, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22474247

RESUMO

BACKGROUND: During heart failure (HF), cardiac metabolic substrate preference changes from fatty acid (FA) toward glucose oxidation. This change may cause progression toward heart failure. We hypothesize that a diet rich in FAs may prevent this process, and that dietary ω3-FAs have an added antiarrhythmic effect based on action potential (AP) shortening in animals with HF. METHODS AND RESULTS: Rabbits were fed a diet containing 1.25% (w/w) high oleic sunflower oil (HF-ω9, N=11), 1.25% fish oil (HF-ω3, N=11), or no supplement (HF-control, N=8). Subsequently, HF was induced by volume and pressure overload. After 4 months, HF-parameters were assessed, electrocardiograms were recorded, and blood and ventricular tissue were collected. Myocytes were isolated for patch clamp or intracellular Ca(2+)- recordings to study electrophysiologic remodeling and arrhythmogenesis. Both the HF-ω9 and the HF-ω3 groups had larger myocardial FA oxidation capacity than HF control. The HF-ω3 group had significantly lower mean (± SEM) relative heart and lung weight (3.3±0.13 and 3.2±0.12 g kg(-1), respectively) than HF control (4.8±0.30 and 4.5±0.23), and shorter QTc intervals (167±2.6 versus 182±6.4). The HF-ω9 also displayed a significantly reduced relative heart weight (3.6±0.26), but had similar QTc (179±4.3) compared with HF control. AP duration in the HF-ω3 group was ≈20% shorter due to increased I(to1) and I(K1) and triggered activity, and Ca(2+)-aftertransients were less than in the HF-ω9 group. CONCLUSIONS: Dietary unsaturated FAs started prior to induction of HF prevent hypertrophy and HF. In addition, fish oil FAs prevent HF-induced electrophysiologic remodeling and arrhythmias.


Assuntos
Arritmias Cardíacas/prevenção & controle , Cardiomegalia/prevenção & controle , Gorduras Insaturadas na Dieta/uso terapêutico , Ácidos Graxos Insaturados/uso terapêutico , Insuficiência Cardíaca/prevenção & controle , Insuficiência Cardíaca/fisiopatologia , Potenciais de Ação/fisiologia , Administração Oral , Animais , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Gorduras Insaturadas na Dieta/administração & dosagem , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Ácidos Graxos Insaturados/administração & dosagem , Insuficiência Cardíaca/patologia , Masculino , Modelos Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp , Coelhos
16.
Front Physiol ; 2: 10, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21483726

RESUMO

OBJECTIVE: Metabolic inhibition causes a decline in mechanical performance and, if prolonged, myocardial contracture and cell death. The decline in mechanical performance is mainly due to altered intracellular calcium handling, which is under control of the Na(+)/Ca(2+)-exchanger (NCX) The driving force of the NCX (ΔG(ncx)) determines the activity of NCX. The aim of this study was to describe the relation between ΔG(ncx) and calcium homeostasis during metabolic inhibition. METHODS: In left ventricular rabbit myocytes, during metabolic inhibition (2 mmol/L sodium cyanide), sodium ([Na(+)](i)), calcium ([Ca(2+);](i)), and action potentials were determined with SBFI, indo-1, and the patch clamp technique. Changes of ΔG(ncx) were calculated. RESULTS: During metabolic inhibition: The first 8 min [Na(+)](i) remained constant, systolic calcium decreased from 532 ± 28 to 82 ± 13 nM, diastolic calcium decreased from 121 ± 12 to 36 ± 10 nM and the sarcoplasmic reticulum (SR) calcium content was depleted for 85 ± 3%. After 8 min [Na(+);](i) and diastolic calcium started to increase to 30 ± 1.3 mmol/L and 500 ± 31 nM after 30 min respectively. The action potential duration shortened biphasically. In the first 5 min it shortened from 225 ± 12 to 153 ± 11 ms and remained almost constant until it shortened again after 10 min. After 14 min action potential and calcium transients disappeared due to unexcitability of the myocytes. This resulted in an increased of the time average of ΔG(ncx) from 6.2 ± 0.2 to 7.7 ± 0.3 kJ/mol during the first 3 min, where after it decreased and became negative after about 15 min. CONCLUSION: Metabolic inhibition caused an early increase of ΔG(ncx) caused by shortening of the action potential. The increase of ΔG(ncx) contributed to decrease of diastolic calcium, calcium transient amplitude, SR calcium content, and contractility. The increase of diastolic calcium started after ΔG(ncx) became lower than under aerobic conditions.

17.
J Mol Cell Cardiol ; 46(6): 943-51, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19232352

RESUMO

By using a newly developed optical technique which enables non-invasive measurement of mitochondrial oxygenation (mitoPO(2)) in the intact heart, we addressed three long-standing oxygenation questions in cardiac physiology: 1) what is mitoPO(2) within the in vivo heart?, 2) is mitoPO(2) heterogeneously distributed?, and 3) how does mitoPO(2) of the isolated Langendorff-perfused heart compare with that in the in vivo working heart? Following calibration and validation studies of the optical technique in isolated cardiomyocytes, mitochondria and intact hearts, we show that in the in vivo condition mean mitoPO(2) was 35+/-5 mm Hg. The mitoPO(2) was highly heterogeneous, with the largest fraction (26%) of mitochondria having a mitoPO(2) between 10 and 20 mm Hg, and 10% between 0 and 10 mm Hg. Hypoxic ventilation (10% oxygen) increased the fraction of mitochondria in the 0-10 mm Hg range to 45%, whereas hyperoxic ventilation (100% oxygen) had no major effect on mitoPO(2). For Langendorff-perfused rat hearts, mean mitoPO(2) was 29+/-5 mm Hg with the largest fraction of mitochondria (30%) having a mitoPO(2) between 0 and 10 mm Hg. Only in the maximally vasodilated condition, did the isolated heart compare with the in vivo heart (11% of mitochondria between 0 and 10 mm Hg). These data indicate 1) that the mean oxygen tension at the level of the mitochondria within the heart in vivo is higher than generally considered, 2) that mitoPO(2) is considerably heterogeneous, and 3) that mitoPO(2) of the classic buffer-perfused Langendorff heart is shifted to lower values as compared to the in vivo heart.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Ácido Aminolevulínico/farmacologia , Animais , Células Cultivadas , Citometria de Fluxo , Coração/efeitos dos fármacos , Masculino , Microscopia de Fluorescência , Mitocôndrias Cardíacas/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/metabolismo , Ratos , Ratos Wistar
18.
Heart Rhythm ; 5(8): 1178-85, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18675229

RESUMO

BACKGROUND: Heterogeneity of repolarization and conduction is a potential source of arrhythmogenesis. In heart failure (HF), intercellular coupling is reduced and heterogeneities may become evident because of reduced intercellular coupling. OBJECTIVE: This study sought to investigate connexin43 (Cx43) expression, conduction velocity (CV), refractoriness and inducibility of arrhythmias at multiple sites of the left ventricle during HF. METHODS: HF was induced by pressure-volume overload in rabbits. Epicardial and intramural mapping was performed in isolated perfused hearts following programmed stimulation. Myocytes were enzymatically dissociated and studied using D-4-ANEPPS fluorescence. Western blotting and immunohistochemistry was performed to quantify heterogeneity of Cx43 expression. RESULTS: Cx43 was heterogeneously reduced in the midmyocardial, but not in the sub epicardium layer of the left ventricular free wall in HF compared to control rabbits. In HF, subepicardial and midmyocardial refractory periods (RPs) were increased compared to control rabbits (148 +/- 3 ms and 143 +/- 3 versus 131 +/- 2 and 129 +/- 2 ms, respectively, both P < 0.001). Also, transmural dispersion of RPs was larger in HF (30 +/- 4 ms) than in control rabbits (24 +/- 3 ms, P < 0.05). Intrinsic dispersion of action potential duration in isolated myocytes was similar in HF and control rabbits. Transmural CV was heterogeneous, although the mean CV was not different between groups. Arrhythmias were more easily inducible in HF, especially from midmyocardium. CONCLUSION: In HF, midmyocardial Cx43 expression is heterogeneously reduced. This is associated with increased transmural dispersion in refractoriness and conduction, and with increased arrhythmia inducibility.


Assuntos
Mapeamento Potencial de Superfície Corporal , Conexina 43/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Taquicardia Ventricular/fisiopatologia , Fibrilação Ventricular/fisiopatologia , Potenciais de Ação , Animais , Eletrofisiologia Cardíaca , Fibrose/fisiopatologia , Imuno-Histoquímica , Masculino , Modelos Animais , Pericárdio/fisiopatologia , Coelhos , Taquicardia Ventricular/etiologia , Fibrilação Ventricular/etiologia
19.
Circulation ; 117(4): 536-44, 2008 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-18195172

RESUMO

BACKGROUND: Fish oil reduces sudden death in patients with prior myocardial infarction. Sudden death in heart failure may be due to triggered activity based on disturbed calcium handling. We hypothesized that superfusion with omega3-polyunsaturated fatty acids (omega3-PUFAs) from fish inhibits triggered activity in heart failure. METHODS AND RESULTS: Ventricular myocytes were isolated from explanted hearts of rabbits with volume- and pressure-overload-induced heart failure and of patients with end-stage heart failure. Membrane potentials (patch-clamp technique) and intracellular calcium (indo-1 fluorescence) were recorded after 5 minutes of superfusion with Tyrode's solution (control), omega-9 monounsaturated fatty acid oleic acid (20 micromol/L), or omega3-PUFAs (docosahexaenoic acid or eicosapentaenoic acid 20 micromol/L). omega3-PUFAs shortened the action potential at low stimulation frequencies and caused an approximately 25% decrease in diastolic and systolic calcium (all P<0.05). Subsequently, noradrenalin and rapid pacing were used to evoke triggered activity, delayed afterdepolarizations, and calcium aftertransients. omega3-PUFAs abolished triggered activity and reduced the number of delayed afterdepolarizations and calcium aftertransients compared with control and oleic acid. Omega3-PUFAs reduced action potential shortening and intracellular calcium elevation in response to noradrenalin. Results from human myocytes were in accordance with the findings obtained in rabbit myocytes. CONCLUSIONS: Superfusion with omega3-PUFAs from fish inhibits triggered arrhythmias in myocytes from rabbits and patients with heart failure by lowering intracellular calcium and reducing the response to noradrenalin.


Assuntos
Óleos de Peixe/farmacologia , Insuficiência Cardíaca/patologia , Células Musculares/efeitos dos fármacos , Potenciais de Ação , Animais , Arritmias Cardíacas/prevenção & controle , Cálcio/análise , Células Cultivadas , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/farmacologia , Humanos , Potenciais da Membrana , Células Musculares/citologia , Norepinefrina/farmacologia , Coelhos
20.
Heart Rhythm ; 4(11): 1452-60, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17954406

RESUMO

BACKGROUND: Fish oil reduces the incidence of sudden cardiac death in postmyocardial infarction patients. Triggered activity is the principal mechanism of arrhythmogenesis under these conditions. OBJECTIVE: The purpose of this study was to test whether dietary fish oil in pigs inhibits Ca2+ overload-induced triggered activity. METHODS: Pigs were fed a diet of fish oil or sunflower oil for 8 weeks. Ventricular myocytes (omega3: fish oil, n = 11; control: sunflower oil, n = 8) were isolated by enzymatic dissociation and used for patch clamp studies and intracellular Ca2+ recordings. Triggered activity was induced by rapid pacing in the presence of norepinephrine. RESULTS: Dietary fish oil reduced the incidence of triggered action potentials and delayed afterdepolarizations compared to control (9.1% in omega3 and 84.6% in control, P <.05), concomitant with a reduction in spontaneous Ca2+ release. Dietary fish oil prevented Ca2+ overload and reduced action potential prolongation in response to norepinephrine (DeltaAPD(90): 23.2 +/- 8.5 ms in omega3 and 107.4 +/- 15.9 in control, P <.05). omega3 myocytes displayed decreased sarcoplasmic reticulum Ca2+ content, reduced L-type Ca2+ current (I(Ca,L)), and less recruitment of the Na+/Ca2+ exchange current (I(NCX)) in response to norepinephrine compared to control. In the absence of norepinephrine, the slow component of the delayed rectifier current (I(Ks)) was larger in omega3 myocytes. In the presence of norepinephrine, I(Ks) increased to the same level in omega3 and control myocytes. CONCLUSION: Dietary fish oil reduces the incidence of triggered activity and prevents Ca2+ overload and AP prolongation in response to norepinephrine. Fish oil may prevent arrhythmias in patients with heart failure.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/prevenção & controle , Morte Súbita Cardíaca/prevenção & controle , Poeira , Óleos de Peixe/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Células Musculares/efeitos dos fármacos , Estado Nutricional , Animais , Canais de Cálcio/efeitos dos fármacos , Incidência , Masculino , Potenciais da Membrana/efeitos dos fármacos , Fosfolipídeos , Fatores de Risco , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...